首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89379篇
  免费   10149篇
  国内免费   5120篇
电工技术   12559篇
技术理论   13篇
综合类   7891篇
化学工业   12606篇
金属工艺   4615篇
机械仪表   3721篇
建筑科学   11017篇
矿业工程   2556篇
能源动力   13095篇
轻工业   2883篇
水利工程   1747篇
石油天然气   2922篇
武器工业   707篇
无线电   5987篇
一般工业技术   9817篇
冶金工业   4672篇
原子能技术   1468篇
自动化技术   6372篇
  2024年   225篇
  2023年   1802篇
  2022年   2847篇
  2021年   3353篇
  2020年   3561篇
  2019年   3215篇
  2018年   2717篇
  2017年   3269篇
  2016年   3661篇
  2015年   3617篇
  2014年   6009篇
  2013年   5890篇
  2012年   6589篇
  2011年   7280篇
  2010年   5533篇
  2009年   5660篇
  2008年   5133篇
  2007年   5694篇
  2006年   4715篇
  2005年   3770篇
  2004年   3186篇
  2003年   2760篇
  2002年   2403篇
  2001年   2018篇
  2000年   1761篇
  1999年   1330篇
  1998年   1046篇
  1997年   865篇
  1996年   807篇
  1995年   670篇
  1994年   625篇
  1993年   466篇
  1992年   380篇
  1991年   344篇
  1990年   282篇
  1989年   228篇
  1988年   179篇
  1987年   126篇
  1986年   80篇
  1985年   113篇
  1984年   102篇
  1983年   64篇
  1982年   89篇
  1981年   37篇
  1980年   45篇
  1979年   34篇
  1978年   13篇
  1977年   12篇
  1959年   7篇
  1951年   16篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
The supply of electrical energy is critical to convenient and comfortable living. However, people consume a large amount of energy, contributing to an energy crisis and global warming, and damaging some ecological cycles. Residential electricity consumption has greater elasticity than industrial and business consumption; it therefore has high energy-saving potential. This work establishes an automated platform, which provides information about residential electricity consumption in each city in Taiwan. Machine learning was used to forecast future residential electricity demand. A nature-inspired optimization method was applied to enhance the accuracy of the best machine learner, yielding an even better hybrid ensemble model. Performance measures indicate that the resulting model is accurate and provides effective information for reference. An automatic web-based system based on the model was combined with a web crawler and scheduled to run automatically to provide information on monthly residential electricity consumption in each county and city. By providing energy consumption information across the country, power providers and government can discuss policy and set different goals for energy use. The results of this study can facilitate the early implementation of energy-saving and carbon emission-reducing in cities and aid utility companies in establishing energy conservation guidelines.  相似文献   
12.
The carbon vacancy in high-entropy carbides (HECs) has a significant impact on their physical and chemical properties, yet relevant studies have still been relatively few. In this study, we investigate the surface energies of HECs with variable carbon vacancies through first-principles calculations. The results show that the surface energy of the (1 0 0) surface of the stoichiometric HECs is significantly lower than that of (1 1 1) surface. With the decrease in carbon stoichiometry, the surface energies of both (1 0 0) and (1 1 1) surfaces increase gradually, which is mainly due to the weakening of covalent bonding and the decrease of metal Hirshfeld-I (HI) charges. However, the surface energy of (1 0 0) surface increases more quickly than that of (1 1 1) surface and will exceed that of (1 1 1) surface when the carbon stoichiometry decreases to a certain extent, which is primarily attributed to the greater decrease rate of metal HI charges of (1 0 0) surface.  相似文献   
13.
研究了3种微通道板基底羟基化的方法,测量了羟基化处理后微通道板基底表面水接触角及通道端面的形貌变化,分析了各种方法中微通道板基底的亲水性和腐蚀情况。实验结果表明:氨水双氧水溶液对基体表面的亲水性能提升不大,NaOH溶液对基体有腐蚀作用,经食人鱼溶液处理的基体表面亲水性明显提高且无腐蚀作用。研究了微通道板在食人鱼溶液中的浸泡时间和浸泡温度对表面亲水性的影响。结果表明:随着浸泡温度的增加,微通道板表面水接触角先减小后增大,当温度为80℃时达到极小值,浸泡时间对微通道板表面的亲水性影响不大。最终确定了微通道板表面羟基化工艺:浸泡温度为80℃,静置时间为20~60 min。  相似文献   
14.
Renewable energy integration into existing or new energy hubs together with Green technologies such as Power to Gas and Green Hydrogen has become essential because of the aim of keeping the average global temperature rise within 2 °C with regard to the Paris Agreement. Hence, all energy markets are expected to face substantial transitions worldwide. On the other hand, investigation of renewable energy systems integrated with green chemical conversion, and in particular combination of green hydrogen and synthetic methanation, is still a scarce subject in the literature in terms of optimal and simultaneous design and operation for integrated energy grids under weather intermittency and demand uncertainty. In fact, the integration of such promising new technologies has been studied mainly in the operational phase, without considering design and management simultaneously. Thus, in this work, a multi-period mixed-integer linear programming (MILP) model is formulated to deal with the aforementioned challenges. Under current carbon dioxide limitations dictated by the Paris Agreement, this model computes the best configuration of the renewable and non-renewable-based generators, their optimal rated powers, capacities and scheduling sequences from a large candidate pool containing thirty-nine different equipment simultaneously. Moreover, the effect of the intermittent nature of renewable resources is analyzed comprehensively under three different scenarios for a specific location. Accordingly, a practical scenario generation method is proposed in this work. It is observed that photovoltaic, oil co-generator, reciprocating ICE, micro turbine, and bio-gasifier are the equipment that is commonly chosen under the three different scenarios. Results also show that concepts such as green hydrogen and power-to-gas are currently not preferable for the investigated location. On the other hand, analysis shows that if the emission limits are getting tightened, it is expected that constructing renewable resource-based grids will be economically more feasible.  相似文献   
15.
Lithium iron phosphate battery (LIPB) is the key equipment of battery energy storage system (BESS), which plays a major role in promoting the economic and stable operation of microgrid. Based on the advancement of LIPB technology and efficient consumption of renewable energy, two power supply planning strategies and the china certified emission reduction (CCER) model are proposed respectively. Based on it, the multi-objective planning optimization model with economic benefits, environmental benefits and power supply stability as the objective function is established for the first time, and the Newton Weighted Sum Frisch method (NWSFA) solution model is adopted. In the planning process, rain flow counting method is used to research the life of BESS, which improves the accuracy of energy storage annual cost calculation. A park in northern China is taken as a case study to demonstrate the application of this model. The simulation results show that the annual economic operating cost of BESS is decreased by 18.81%, the energy supply reliability is increased by 0.15%, and the optimal electricity price adjustment ratio of the system is 15%.  相似文献   
16.
We propose a self-sustaining power supply system consisting of a “Hybrid Energy Storage System (HESS)” and renewable energy sources to ensure a stable supply of high-quality power in remote islands. The configuration of the self-sustaining power supply system that can utilize renewable energy sources effectively on remote islands where the installation area is limited is investigated. It is found that it is important to select renewable energy sources whose output power curve is close to the load curve to improve the efficiency of the system. The operation methods that can increase the cost-effectiveness of the self-sustaining power supply system are also investigated. It is clarified that it is important for increasing the cost effectiveness of the self-sustaining power supply system to operate the HESS with a smaller capacity of its components by setting upper limits on the output power of the renewable energy sources and cutting the infrequent generated power.  相似文献   
17.
18.
Hydrogen generation from renewable energy resources is considered as a suitable solution to solve the problems related to the energy sector and the reduction of greenhouse gases. The aim of this study is to provide an integrated framework for identifying suitable areas for the construction of wind farms to produce hydrogen. For this purpose, a combined method of Geographic Information System (GIS) and multi-criteria decision making (MCDM) has been used to locate the power plant in Yazd province. The GIS method in the present study consisted of two parts: constraints and criteria. The constraint section included areas that were unsuitable for the construction of wind farms to produce power and hydrogen. In the present study, various aspects such as physical, economic and environmental had been considered as constraints. In the criteria section, eight different criteria from technical aspects (including average wind speed, hydrogen production potential, land slope) and economic aspects (including distance to electricity grid, distance to urban areas, distance to road, distance to railway and distance to centers of High hydrogen consumption) had been investigated. The MCDM tool had been used to weigh the criteria and identify suitable areas. Analytic Hierarchy Process (AHP) technique was used for weighting the criteria. The results of AHP weighting method showed that economic criteria had the highest importance with a value of 0.681. The most significant sub-criterion was the distance to urban areas and the least significant sub-criterion was the distance to power transmission lines. The results of GIS-MCDM analysis had shown that the most proper areas were in the southern and central sectors of Yazd province. In addition, the feasibility of hydrogen production from wind energy had shown that this province had the capacity to generate hydrogen at the rate of 53.6–128.6 tons per year.  相似文献   
19.
Water electrolysis technologies aim to provide a significant increase in green hydrogen production efficiency. In this work, a framework was developed to explore the use of supercritical water for alkaline electrolysis. This framework was used to perform Arrhenius analysis as a function of potential, and to explore activation energies for sub- and supercritical water electrolysis. An analysis of the conductivity of solution unveiled a discontinuity in the trends between sub- and supercritical potassium hydroxide solution conductivity. Unlike prior work on supercritical water electrolysis, this work investigates trends in electrochemical parameters, the sources of these trends, and how they change between the sub- and supercritical regimes.  相似文献   
20.
The reaction of H2 and O2 to water are studied over a Ag–Pd/TiO2 anatase catalyst, under dark and photo-irradiation conditions in the gas and liquid phases. The catalyst consisted of metal particles of mean size of ca.1 nm dispersed over 10–15 nm TiO2 particles. Kinetic parameters including order of reaction (n), rate constant (k), and activation energy (Ea), were evaluated. Ea for the thermal reaction was found to be 49-47 kJ mol?1. The oxidation reaction rate constant was found to be ca. 3 times higher in the presence of photons when compared to dark reaction at room temperature. The overall quantum yield of the reaction in the slurry phase was found to be 0.09. Considering the number of metal particles on TiO2, the photon yield per metal particle was found to be 0.16. A possible explanation of the changes in kinetics with respect to experimental conditions is given.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号